
connect() - why you
so slow?

2

Systems Engineer @ Cloudflare

● security_create_user_ns()

● CVE-2022-47929: traffic control noqueue no
problem?

● pci_(alert|crit|dbg|emerg|err|info|notice|warn)
printk macros

Frederick Lawler

50k egress unicast
connections to a
single destination…
Who does that?

Who does that?

4

CDN request flow for uncached assets

5

$ sysctl net.ipv4.ip_local_port_range
net.ipv4.ip_local_port_range = 9024 65535

Who does that?

6

Who does that?

sk = socket(AF_INET, SOCK_STREAM)

sk.setsockopt(IPPROTO_IP, IP_BIND_ADDRESS_NO_PORT, 1)

sk.bind((src_ip, 0))

sk.connect((dest_ip, dest_port))

How to stop running out of ephemeral ports and start to love long-lived
connections

bind() before connect()

https://blog.cloudflare.com/how-to-stop-running-out-of-ephemeral-ports-and-start-to-love-long-lived-connections/
https://blog.cloudflare.com/how-to-stop-running-out-of-ephemeral-ports-and-start-to-love-long-lived-connections/

7

Who does that?

8

2 IPv4 addresses for this service

Who does that?

9

Who does that?

tcp_v4_connect() func latency 2 IPv4 address

10

1 IPv4 addresses for this service

Who does that?

11

Who does that?

IPv4 sales data. Source: Hilco Streambank.

https://auctions.ipv4.global/prior-sales

12

Who does that?

tcp_v4_connect() func latency 1 IPv4 address

13

Who does that?

tcp_v4_connect() func latency 3 IPv4 address (for fun)

14

This is fine for most workloads, but for Cloudflare…
Who does that?

● Customers largely still leverage IPv4

● Similar performance with 1 IPv4’s as
we’d see with 3

● Leverage our infrastructure to lazily
hand off excess connections
ie. fail fast

Time to investigate:
TCP connect() why
you so slow?

16

Time to investigate: TCP connect() why you so slow?

17

inet_hash_connect() overview

● Called in both TCP IPv4 & IPv6 contexts; but we’ll be focusing on IPv4
● We assume the kernel has to pick a port

Time to investigate: TCP connect() why you so slow?

18

 __inet_hash_connect() overview

 offset &= ~1U;

other_parity_scan:
 port = low + offset;
 for (i = 0; i < remaining; i += 2, port += 2) {
 if (unlikely(port >= high))
 port -= remaining;

 inet_bind_bucket_for_each(tb, &head->chain) {
 if (inet_bind_bucket_match(tb, net, port, l3mdev)) {
 if (!check_established(death_row, sk,
 port, &tw))
 goto ok;
 goto next_port;
 }
 }
 }

 offset++;
 if ((offset & 1) && remaining > 1)
 goto other_parity_scan;

Time to investigate: TCP connect() why you so slow?

net/ipv4/inet_hashtables.c:__inet_hash_connect

https://elixir.bootlin.com/linux/v6.6/source/net/ipv4/inet_hashtables.c#L1000

19

 __inet_hash_connect() overview: initial port selection

 offset &= ~1U;

other_parity_scan:
 port = low + offset;
 for (i = 0; i < remaining; i += 2, port += 2) {
 if (unlikely(port >= high))
 port -= remaining;

 inet_bind_bucket_for_each(tb, &head->chain) {
 if (inet_bind_bucket_match(tb, net, port, l3mdev)) {
 if (!check_established(death_row, sk,
 port, &tw))
 goto ok;
 goto next_port;
 }
 }
 }

 offset++;
 if ((offset & 1) && remaining > 1)
 goto other_parity_scan;

Time to investigate: TCP connect() why you so slow?

● Offset is randomly generated

● Offset is set to an even number

● Picked port is either “even” or
“odd” based on
net.ipv4.ip_local_port_range’s
low port eg. 9024

Are we starting our loop at the same offset each
connect()?

net: Compute protocol
sequence numbers and
fragment IDs using MD5.
introduced
secure_ipv4_port_ephem
eral() with md5 hashing

20

Time to investigate: TCP connect() why you so slow?

tcp: change source port
randomizarion at
connect() time
table_perturb introduced
for more randomization +
fingerprint mitigation

secure_seq: use SipHash
in place of MD5

tcp: resalt the secret
every 10 seconds

2011 20212017 2022

Are we starting our loop at the same offset each
connect()?
#!/usr/bin/env bpftrace

/*

 // net/ipv4/inet_hashtables.c:__inet_hash_connect

 <+211>: and edx,0xfffffffe // offset &= ~1U;

 <+214>: mov DWORD PTR [rsp+0x28],edx

 // other_parity_scan:

 <+218>: add r14d,DWORD PTR [rsp+0x28] // port = low + offset;

 <+223>: test r13d,r13d

*/

kprobe:__inet_hash_connect+223 {

 $port = reg("r14");

 @port_buckets = lhist($port, 9024, 65535, 10000);

}
21

Time to investigate: TCP connect() why you so slow?

Are we starting our loop at the same offset each
connect()?

22

Time to investigate: TCP connect() why you so slow?

23

 __inet_hash_connect() overview: the loop

 offset &= ~1U;

other_parity_scan:
 port = low + offset;
 for (i = 0; i < remaining; i += 2, port += 2) {
 if (unlikely(port >= high))
 port -= remaining;

 inet_bind_bucket_for_each(tb, &head->chain) {
 if (inet_bind_bucket_match(tb, net, port, l3mdev)) {
 if (!check_established(death_row, sk,
 port, &tw))
 goto ok;
 goto next_port;
 }
 }
 }

 offset++;
 if ((offset & 1) && remaining > 1)
 goto other_parity_scan;

Time to investigate: TCP connect() why you so slow?

● Check if the socket is unique

● check_established() ==
__inet_check_established()

Is __inet_check_established() a problem?

● Tested benchmarks on a quiet virtual machine

● No other connections were established for the same src/dest ip + dest port

● Therefore, negligible impact

● Bind buckets will fill up eventually!

24

Time to investigate: TCP connect() why you so slow?

The quantum state of a TCP port

https://blog.cloudflare.com/the-quantum-state-of-a-tcp-port/

25

 __inet_hash_connect() overview: the loop

 offset &= ~1U;

other_parity_scan:
 port = low + offset;
 for (i = 0; i < remaining; i += 2, port += 2) {
 if (unlikely(port >= high))
 port -= remaining;

 inet_bind_bucket_for_each(tb, &head->chain) {
 if (inet_bind_bucket_match(tb, net, port, l3mdev)) {
 if (!check_established(death_row, sk,
 port, &tw))
 goto ok;
 goto next_port;
 }
 }
 }

 offset++;
 if ((offset & 1) && remaining > 1)
 goto other_parity_scan;

Time to investigate: TCP connect() why you so slow?

● Loop through first half of the
ephemeral range then second

● Every other port is tested in
sequence

26

 __inet_hash_connect() overview: the loop
Time to investigate: TCP connect() why you so slow?

Is the loop the problem?

27

Time to investigate: TCP connect() why you so slow?

2.1 min @ 56k connections

● Via experimentation

● Counted the even ports green, odd
ports red

● Our port range dictates we always
loop through even ports first

Tracking port parity switches

#!/usr/bin/env bpftrace

kretfunc:vmlinux:inet_hash_connect /retval == 0/ {

 $port = args->sk->__sk_common.skc_num;

 @procs[comm,cgroup] += $port & 1;

}

rate(connect_port_parity_switches_total[1m])

Prometheus exporter for eBPF metrics

28

Time to investigate: TCP connect() why you so slow?

https://github.com/cloudflare/ebpf_exporter

29

Our conclusion

● Exhausting half the
net.ipv4.ip_local_port_range is fast

● The port looping appears to be our
primary bottleneck

● Evidenced by a previous attempt
[PATCH] tcp: avoid unnecessary
loop if even ports are used up and
was not merged

Time to investigate: TCP connect() why you so slow?

https://lore.kernel.org/netdev/20210220110356.84399-1-redsky110@gmail.com/#t
https://lore.kernel.org/netdev/20210220110356.84399-1-redsky110@gmail.com/#t

What do?

Some feasible, but not viable solutions for our case

1. Split egress unicast connections over 2..N IP addresses

2. Introduce a sysctl to manipulate connect

3. Pick a random port in userspace, and bind() with that

4. Leverage the new IP_LOCAL_PORT_RANGE socket option (v6.3.y)*

31

What do?

Split egress unicast connections over 2..N IP addresses

● Leaks networking configuration to user space

● No ability to tell the interface to balance between assigned IP’s or IP blocks

● Requires IP_BIND_ADDRESS_NO_PORT socket option + bind() before connect()
pattern

● We do this strategy now, but want to reduce to 1 IP

32

What do?

Introduce a sysctl to manipulate connect

● Kernel modification

● [PATCH] tcp: avoid unnecessary loop if even ports are used up

33

What do?

https://lore.kernel.org/netdev/20210220110356.84399-1-redsky110@gmail.com/#t

Pick a random port in userspace, and bind() before
connect()

● Requires bind() before connect()

● Syscall overhead and ~8-12
attempts per connect closer to
exhaustion

● Good up to ~70-80% port range
utilization

34

What do?

sys = get_ip_local_port_range()
estab = 0
i = sys.hi
while i >= 0:
 if estab >= sys.hi:
 break

 random_port = random.randint(
 sys.lo, sys.hi)
 connection = attempt_connect(random_port)
 if connection is None:
 i += 1
 continue

 i -= 1
 estab += 1

Leverage the new IP_LOCAL_PORT_RANGE socket
option (v6.3.y)

● Max # of connect() as range

● Pre-allocation of partitions to
balance between

● Loop problem still persists

35

What do?

5k window @ 1.1 sec

Leverage the new IP_LOCAL_PORT_RANGE socket
option (v6.3.y)

● Lower range works better

● Overlapping ranges is possible

● Overlap is determined by
implementation

36

What do?

1k window @ 0.1 sec

Leverage the new IP_LOCAL_PORT_RANGE socket
option (v6.3.y) + random offset

37

What do?

2.1 min -> 1.8 sec!

Implementation details

sys.lo = 9024; sys.hi = 65535

38

What do?

Implementation details

window.lo = 0; window.hi = 500
range = window.hi - window.lo
offset = randint(sys.lo, sys.hi - range)
window.lo = offset; window.hi = offset + range
setsockopt(SOL_IP, IP_LOCAL_PORT_RANGE, window.lo | (window.hi << 16))

39

What do?

Implementation details

● Overlap is OK

● Reattempts may be necessary depending on use case

● Larger net.ipv4.ip_local_port_range is better with smaller selection window

40

What do?

In summary

● Leverages a random port offset +
random low port in range to be even or
odd

● Allows kernel to perform loop over a
small + configurable local port range

● Overlaps windows on top of another

41

What do?

2.1 min -> 1.8 sec @ 56k connections 500 window

Performance 56k unicast egress connections

500 window

42

What do?

1000 window
2.1 min -> 1.8 sec 2.1 min -> 2.0 sec

Performance 56k unicast egress connections

5k window

43

What do?

10k window
2.1 min -> 6.7 sec 2.1 min -> 17.7 sec

Leverage the new IP_LOCAL_PORT_RANGE socket
option (v6.8.y)

44

What do?

2.1 min -> 1.6 sec!

New in Linux 6.8.y

● Just requires IP_LOCAL_PORT_RANGE
from userspace

● Faster performance with other 6.8.y
features

● Guaranteed to find a port

● Patch: tcp/dccp: change source port
selection at connect() time

45

What do?

2.1 min -> 1.6 sec @ 56k connections

https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=207184853dbdb62d8b02c7a141d3297e94e33451
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=207184853dbdb62d8b02c7a141d3297e94e33451

>= Linux 6.8.y implementation

IP_BIND_ADDRESS_NO_PORT = 24

IP_LOCAL_PORT_RANGE = 51

sys = get_local_port_range()

sk = socket(AF_INET, SOCK_STREAM)

sk.setsockopt(IPPROTO_IP, IP_BIND_ADDRESS_NO_PORT, 1)

range = pack("@I", sys.lo | (sys.hi << 16))

sk.setsockopt(IPPROTO_IP, IP_LOCAL_PORT_RANGE, range)

sk.bind((src_ip, 0))

sk.connect((dest_ip, dest_port))

46

What do?

What about UDP?

Completely different algorithm!

● Still uses a tight loop

● Does not check one half of the range,
then the next

● A port is randomly picked, a loop
increments that port by a fixed-random
number until integer overflow back to
original port

● then, increment port by 1 and repeat
until port is found

48

What about UDP?

Takeaways

● Current implementation guarantees a port is selected

● Current implementation is not great at extreme egress workloads

● Random offset + 500-1k window coupled with kernel random port picking
ensures we start looping at both odd and even ports with small-N

● Backport patches or update to at least 6.8.y

● Purely user space implementation

49

Questions?

 fred@cloudflare.com

 connect() - why are you so slow?

 Minimal code that generated the charts

mailto:fred@cloudflare.com
https://blog.cloudflare.com/linux-transport-protocol-port-selection-performance/
https://github.com/fredlawl/connection-benchmarks

