
THINGS I WISH I KNEW ABOUT
CONTAINERS SOONER

Alex Juarez

THANK YOU FOR BEING HERE.

WHO IS THIS FOR?
The container converts

The container curious

The container curmudgeons

WHAT DO I HOPE YOU GET FROM THIS

WHAT DO I HOPE YOU GET FROM THIS
Insight - A new way to think about something
Perspective - See where someone else might be
Knoweldge - Learn something new

HOW DID WE GET TO THIS TOPIC

WHERE ARE WE GOING
What is a Container
Linux Technologies
Working with Containers

WHAT ARE CONTAINERS?

WHAT ARE CONTAINERS?
Containers are groups of processes running on a Linux

system that are isolated from each other.
Podman-in-Action

https://developers.redhat.com/e-books/podman-action

THEY ARE LIKE VIDEO GAME CARTRIDGES

Lightweight
Self-Contained
Portable

OKAY, BUT WHY?

OKAY, BUT WHY?
Containers as isolated processes, leads to better

resource usage and a higher desnity for a single host.

CONTAINER TERMINOLOGY
Container Image - Base static image file.

example: RHEL Universal Base Image (UBI)

Container Engine - So�ware (Podman, Docker) for
running containers on a single machine.

Container Orchestrators - So�ware for running
containrs across multiple machines (Kubernetes,

Swarm)

https://catalog.redhat.com/software/containers/ubi8/ubi/5c359854d70cc534b3a3784e?container-tabs=overview

LINUX TECHNOLOGIES
Namespaces
CGroups
SECCOMP
SELinux

NAMESPACES
Linux Namespaces - Wikipedia

Namespaces are a feature of the Linux
kernel that partitions kernel resources
such that one set of processes sees one

set of resources while another set of
processes sees a different set of

resources.

https://en.wikipedia.org/wiki/Linux_namespaces

CGROUPS
From https://man7.org/linux/man-pages/man7/cgroups.7.html

Control groups, usually referred to as
cgroups, are a Linux kernel feature

which allow processes to be organized
into hierarchical groups whose usage
of various types of resources can then

be limited and monitored.

https://man7.org/linux/man-pages/man7/cgroups.7.html

SECCOMP
Container Security Guide

Secure Computing Mode (seccomp) is a
kernel feature that allows you to filter

system calls to the kernel from a
container.

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux_atomic_host/7/html/container_security_guide/linux_capabilities_and_seccomp#limiting_syscalls_with_seccomp

SELINUX
https://stopdisablingselinux.com/

https://stopdisablingselinux.com/

WORKING WITH CONTAINERS
Container Engines and Runtimes
Container Storage
Container Networking

CONTAINER ENGINE
Docker and Podman are popular container engines

Interface with end-users
Interface with image registries
Interface with container runtimes

CONTAINER RUNTIME
Examples of container runtimes are runc and crun

Manage the container life-cycle.
Setup the cgroups and namespaces.
Manage storage and network setup.
Run and manage the container

CONTAINER VOLUMES
Persistent data and Ephemeral processes

PERSISTENT STORAGE
Bind Mounts
Volumes

BIND MOUNTS
Bind mounts allow one part of the filesystem to be

mounted in another place in the file system.

mount --bind /var/log/httpd /home/admin/logs

BIND MOUNTS IN CONTAINERS
Bind mounts in containers are a way to provide

persistent storage by decoupling filesystem storage
from the container.

Provide files for a web server
Share additional/updated config files
Test code changes

EXAMPLE BIND MOUNT
podman run -d --rm --name ghost-app1

--network ghost-network --
ip=10.89.0.10 -v

/var/srv/containers/ghost-
content:/var/lib/ghost/content:Z ghost

CONTAINER VOLUMES
Can be re-used amongst containers
Stored as a file in container storage.

CONTAINER COMMUNICATION

CONTAINER COMMUNICATION
There are a couple of ways communication can

happen

CONTAINER COMMUNICATION
There are a couple of ways communication can

happen

App/Host to Container

CONTAINER COMMUNICATION
There are a couple of ways communication can

happen

App/Host to Container
Container to Container

APP/HOST AND CONTAINER
The easiest way to talk to a container is through any of

the exposed ports.
$ podman image inspect docker.io/library/httpd:latest
"Config": {
 "ExposedPorts": {
 "80/tcp": {}
 },

CONTAINER TO CONTAINER
Containers can communicate with each other if they

are on the same network.
$ podman network ls
NETWORK ID NAME DRIVER
2a3689189ffd podman bridge
$ podman inspect 2a3689189ffd
"Networks": {
 "ghost-network": {
 "EndpointID": "",
 "Gateway": "10.89.0.1",
 "IPAddress": "10.89.0.2",
 "IPPrefixLen": 24,
 "IPv6Gateway": "",
 "GlobalIPv6Address": "",
 "GlobalIPv6PrefixLen": 0,
 "MacAddress": "4e:34:cc:bd:92:b5",

"NetworkID": "ghost-network",

CONTAINER ORCHESTARITON

CONTAINER ORCHESTARITON
BUT NOT REALLY...

EXAMPLE
#!/bin/bash

podman run -d --rm --name ghost-app1 --network ghost-network
podman run -d --rm --name ghost-app2 --network ghost-network
podman run -d --rm -v /root/custom-nginx.conf:/etc/nginx/nginx

IN REVIEW

IN REVIEW
THE THINGS I WISH I KNEW SOONER

1. Containers aren't scary, just a game cartridge
2. CGroups, Namespaces, etc. It's JUST Linux
3. Storage and Networking were really key to learn.

QUESTIONS?

THANK YOU!

