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Some things you’ve
probably heard
about WebAssembly



WebAssembly is becoming very popular
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The textbook definition

"WebAssembly is a binary instruction format for a
stack-based virtual machine. Wasm is designed as
a portable compilation target for programming
languages, enabling deployment on the web for
client and server applications.”



WebAssembly has an abbreviation

WebAssembly == Wasm



Wasm is being used everywhere

Browsers, server-side, plugins and more



Wasm has major adoption
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People are excited about these four properties

Security — Sandboxed execution environment
Performance — Near native execution speed
Polyglot — Supports a wide array of languages

Portability - Cross-platform and
cross-architecture



Okay, but what
actually is Wasm?



People are excited about these four properties

1. Security — Sandboxed execution environment
2. Performance — Near native execution speed
3. Polyglot — Supports a wide array of languages
4

Portability - Cross-platform and
cross-architecture
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Wasm is another bytecode format
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A Wasm module has two representations

Binary Format foo.wasm

Sadd (| am Slhs 132) (
$lhs

Text Format i foo.wat
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The text format uses s-expressions

Module

o0 ¢

(module
(func S$add (param $lhs i32) (param S$rhs i32) (result i32) Func
local.get Slhs

local.get Srhs

i32.add)
(func S$plusOne (param S$x i32) (result i32)
local.get S$x
152.const 1
call $add))
$add Param Param Result

$lhs i32 $rhs i32 i32

Func



The most basic Wasm module
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A \WWasm module has functions

(module
(func Sadd (param Slhs 132) (param Srhs 1i132) (result 132)
local.get Slhs
local.get Srhs

i32.add)
(func $SplusOne (param S$x i32) (result 1i32)
local.get S$x
i32.const 1
call $add))




Host Runtime
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' Guest Wasm Module

Function: add

Function: plusOne




Wasm runs on a
stack machine



Stack machine example of add(4,3)

(func Sadd (param $lhs i32) (param $rhs i132) (result 132)

Performance




Host Runtime
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Wasm let’s you export functionality

(module
(func Sadd (param S$lhs i32) (param S$rhs i32) (result i32)
local.get Slhs
local.get Srhs

132. add)
(export "wasmAdd" (func Sadd)))




Host Runtime
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Export: wasmAdd
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And it let’s you import functionality
o046

(module
(import "console" "log" (func Sprint (param i32)))
(func SprintNumber (param $x i32)
local.get Sx

call Sprint))




Host Runtime
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Wasm has shared linear memory

(module
(import "console" "log" (func $log (param i32) (param i32)))
Sys mem" (memory 1))

import

(
(data (132.const 0) "Hello, World!\n")
(

func ShelloWoxrld
i32.const ©
i32.const 14
call Slog)
(export "helloWorld" (func ShelloWorld)))




Host Runtime

Shared Linear Memory

, Guest Wasm Module
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Security
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These are just the basics

_ WebAssembly Specification
Release 2.0 (Draft 202:
Web,

Andreas Rossberg (editor)




How does a host
runtime execute my
Wasm?



The three semantic phases

Decoding Validation Execution

Valid Internal

Internal . N
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Some popular Wasm runtimes

Browser Wasmtime Wasm3

Portability




How do | compile my
code to Wasm?



Rust has great Wasm support
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C/C++ has good support too

| emscripten ZIG




Interpreted
languages are a little
more tricky



You need to compile the interpreter to Wasm

Python
Source Code
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WebAssembly Language Support Matrix

Language Core Browser WASI Spin SDK
JavaScript
Python 2
Java V] b4
PHP X
Css N/A N/A N/A N/A
C#and .NET
C++ X
TypeScript X X
Ruby X
(@ V] X
Swift b4
R X V] X X
Objective-C ? X X X
Shell N/A N/A N/A N/A
Scala (JVM) b4
Scala (native) X X X X
Go
PowerShell X X X X
Kotlin (JVM) V] V] V] X
Kotlin (Wasm) X X
Rust
Dart X X X X




What is WASI and the
Component Model?



WASI Preview 1




WebAssembly Component Model

componentC.wasm

componentA

B

Core Wasm Module

componentB
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\WASI Preview 2




How can | actually
use WebAssembly?



O sPIN

The framework to compose serverless
WebAssembly apps quickly
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QD Cloud

The quickest way to deploy and manage
your serverless WebAssembly apps




SpinKube

Hyper-efficient serverless on Kubernetes,
powered by WebAssembly



NEXT STEPS
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Install Snin
1

FERMYONCLOUD Applications Account settings (GEEIED
Download tf c
— "‘ O Activity
chat-bot
Metrics
A
B Activity 70
3
|
Quickstart | O
UiCcKStar e
Logs

Go from blinking cursor to deployed

serverless app in 66 seconds.

https://developer.fermyon.com/spin/quickstart
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