What Actually Is
WebAssembly

Taking a look under the hood

Caleb Schoepp « Cloud Native Rejekts 2023

FERMYON

Caleb Schoepp
Software Engineer
Fermyon

() github.com/calebschoepp
@ calebschoepp.com

FERMYON

Serverless Apps, powered
by WebAssembly

FERMYON

Serverless Apps, powered by WebAssembly.

® SPIN FERMYON

CLOUD

Compose serverless Wasm Deploy and manage
apps quickly. serverless Wasm apps.

Some things you’ve
probably heard
about WebAssembly

WebAssembly is becoming very popular

N

The textbook definition

"WebAssembly is a binary instruction format for a
stack-based virtual machine. Wasm is designed as
a portable compilation target for programming
languages, enabling deployment on the web for
client and server applications.”

WebAssembly has an abbreviation

WebAssembly == Wasm

Wasm is being used everywhere

Browsers, server-side, plugins and more

Wasm has major adoption
as Microsoft f@IStly AT
Google 8 Figma

amazon b, NETFLIX

ROBLOX docker oD

CLOUDFLARE

+5 FERMYON

People are excited about these four properties

Security — Sandboxed execution environment
Performance — Near native execution speed
Polyglot — Supports a wide array of languages

Portability - Cross-platform and
cross-architecture

Okay, but what
actually is Wasm?

People are excited about these four properties

1. Security — Sandboxed execution environment
2. Performance — Near native execution speed
3. Polyglot — Supports a wide array of languages
4

Portability - Cross-platform and
cross-architecture

’ Security lPerformancel Polyglot lPortabiIity

N

Java

Program

Wasm is another bytecode format

Java
@ Compilation @ Execution

Polyglot l

Any
Program

@ Compilation

Bytecode

Wasm Module

@ Execution ¢

Wasm
Runtime

m):

m):

Arm

x86

Arm

x86

A Wasm module has two representations

Binary Format foo.wasm

Sadd (| am Slhs 132) (
$lhs

Text Format i foo.wat

d)
SplusOne (f
al Sx
1
L Sadd))

The text format uses s-expressions

Module

o0 ¢

(module
(func S$add (param $lhs i32) (param S$rhs i32) (result i32) Func
local.get Slhs

local.get Srhs

i32.add)
(func S$plusOne (param S$x i32) (result i32)
local.get S$x
152.const 1
call $add))
$add Param Param Result

$lhs i32 $rhs i32 i32

Func

The most basic Wasm module

000

(module)

A \WWasm module has functions

(module
(func Sadd (param Slhs 132) (param Srhs 1i132) (result 132)
local.get Slhs
local.get Srhs

i32.add)
(func $SplusOne (param S$x i32) (result 1i32)
local.get S$x
i32.const 1
call $add))

Host Runtime

-

' Guest Wasm Module

Function: add

Function: plusOne

Wasm runs on a
stack machine

Stack machine example of add(4,3)

(func Sadd (param $lhs i32) (param $rhs i132) (result 132)

Performance

Host Runtime

=

Guest Wasm Module

Function: add

Function: plusOne
. J
|
not allowed
A

A

Wasm let’s you export functionality

(module
(func Sadd (param S$lhs i32) (param S$rhs i32) (result i32)
local.get Slhs
local.get Srhs

132. add)
(export "wasmAdd" (func Sadd)))

Host Runtime

&

Export: wasmAdd

invokes
function

' Guest Wasm Module

% exports - Function: add

|
D

And it let’s you import functionality
o046

(module
(import "console" "log" (func Sprint (param i32)))
(func SprintNumber (param $x i32)
local.get Sx

call Sprint))

Host Runtime

p=
Guest Wasm Module
Import: console.log ~— imports - Function: print
Function: printNumber
supplies
- . J
function
. l

|
D

Wasm has shared linear memory

(module
(import "console" "log" (func $log (param i32) (param i32)))
Sys mem" (memory 1))

import

(
(data (132.const 0) "Hello, World!\n")
(

func ShelloWoxrld
i32.const ©
i32.const 14
call Slog)
(export "helloWorld" (func ShelloWorld)))

Host Runtime

Shared Linear Memory

, Guest Wasm Module

initializes

Security

Data: “Hello, World!\n”

Import: console.log ~— imports -% Function: log é\

Export: helloWorld % exports - Function: helloWorld

supplies T N J
function e es
function

These are just the basics

_ WebAssembly Specification
Release 2.0 (Draft 202:
Web,

Andreas Rossberg (editor)

How does a host
runtime execute my
Wasm?

The three semantic phases

Decoding Validation Execution

Valid Internal

Internal . N
- - Validation > - Instantiation —>

Module

#l Representation

Representation

Instance

’ Security]

Some popular Wasm runtimes

Browser Wasmtime Wasm3

Portability

How do | compile my
code to Wasm?

Rust has great Wasm support

Ly
x = Arm
Q N l L) l v
Compilation . » Execution
AN
3 = x86

C/C++ has good support too

| emscripten ZIG

Interpreted
languages are a little
more tricky

You need to compile the interpreter to Wasm

Python
Source Code

’ Polyglot

A

Wals

J0F40F

Any

@ Compilation @

Program

WebAssembly Language Support Matrix

Language Core Browser WASI Spin SDK
JavaScript
Python 2
Java V] b4
PHP X
Css N/A N/A N/A N/A
C#and .NET
C++ X
TypeScript X X
Ruby X
(@ V] X
Swift b4
R X V] X X
Objective-C ? X X X
Shell N/A N/A N/A N/A
Scala (JVM) b4
Scala (native) X X X X
Go
PowerShell X X X X
Kotlin (JVM) V] V] V] X
Kotlin (Wasm) X X
Rust
Dart X X X X

What is WASI and the
Component Model?

WASI Preview 1

WebAssembly Component Model

componentC.wasm

componentA

B

Core Wasm Module

componentB

-GO

Core Wasm Module

\WASI Preview 2

How can | actually
use WebAssembly?

O sPIN

The framework to compose serverless
WebAssembly apps quickly

FERMYON

QD Cloud

The quickest way to deploy and manage
your serverless WebAssembly apps

SpinKube

Hyper-efficient serverless on Kubernetes,
powered by WebAssembly

NEXT STEPS

, |
‘

Install Snin
1

FERMYONCLOUD Applications Account settings (GEEIED
Download tf c
— "‘ O Activity
chat-bot
Metrics
A
B Activity 70
3
|
Quickstart | O
UiCcKStar e
Logs

Go from blinking cursor to deployed

serverless app in 66 seconds.

https://developer.fermyon.com/spin/quickstart

D
O
)
V4
C
QO
C
—

